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We investigate the derivation of Euler’s equation from Hamilton’s variational principle
for flows decomposed into their mean and fluctuating parts. Our particular concern
is with the flow decomposition used in the derivation of the Navier–Stokes–α
equation which expresses the fluctuating velocity in terms of the mean flow and
a small fluctuating displacement. In the past the derivation has retained terms up
to second order in the Lagrangian which is then averaged. The variation is effected
by incrementing the mean velocity, while holding the moments of the products of
the displacements fixed. The process leads to a mean Euler equation for the mean
velocity. The Navier–Stokes–α equation is only obtained after making a further closure
approximation, which is not the concern of this paper. Instead attention is restricted
here to the exact analysis of Euler’s equation. We show that a proper implementation
of Hamilton’s principle, which concerns the virtual variation of particle paths, can
only be achieved when the fluctuating displacement and mean velocity are varied
in concert. This leads to an exact form of Euler’s equation. If, on the other hand,
the displacement is held fixed under the variation, a term in Euler’s equation is lost.
Averaging that erroneous form provides the basis of the Navier–Stokes–α equation.
We explore the implications of the correct mean equation, particularly with regard to
Kelvin’s circulation theorem, comparing it with the so called GLM and glm-equations.

1. Introduction
Increasing attention has been paid during the past decade to a regularized form of

the Euler equations that was first postulated by Holm, Marsden & Ratiu (1998) and
that builds on the earlier Camassa–Holm equation for one-dimensional compressible
flow. The regularized equations, originally named after Camassa & Holm (1993),
are now more generally known as ‘the Navier–Stokes–α equations’, or simply ‘NS–α

equations’. The theme has been developed further in a series of papers (Holm 1999,
2002b; Marsden & Shkoller 2003). Despite its name, viscous forces are omitted from
the NS–α equations, and they will therefore be called here ‘the Euler–α equations’.
A generalized Euler–α model has also been proposed that includes viscosity; see for
example Foias, Holm & Titi (2001). This is variously called ‘the viscous Camassa–
Holm model’ and ‘the Kelvin–filtered Navier–Stokes equation’ and has been applied
to turbulence. In fact, even the Euler–α theory has proved its worth in parameterizing
unresolved ‘subgrid scales’ in numerical simulations of systems having a wide range
of length scales. It also has, in the case of incompressible or barotropic fluids, the
attractive property of preserving Kelvin’s theorem on the constancy of fluid circulation
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round any closed circuit moving with the fluid. The model has been generalized to
other contexts, such as magnetohydrodynamic flows (see for example Holm 2002a;
Roberts & Soward 2006).

As explained by Holm (2002b), the Euler–α equations have so far been derived only
from Hamilton’s principle. His strategy was to decompose the velocity into a mean
and fluctuating part, which itself is represented by a fluctuating displacement advected
by the mean flow. The Lagrangian for the application of the variational method is
averaged, neglecting all terms smaller than quadratic in the fluctuating displacement.
Normally, in the application of Hamilton’s principle, the virtual change in the velocity
is equal to the virtual change in either the mean or fluctuating velocity, whichever is
varied. In Holm’s approach, the fluctuating velocity is a function of the mean velocity,
because the fluctuating displacement is advected by it. So under a virtual change of
the mean velocity, the fluctuating velocity varies in concert. Thus the virtual change
of the velocity is not achieved by a virtual change of the mean velocity alone, as
envisaged by Holm (2002b), but must be accompanied by a corresponding change in
the virtual displacement. Owing to this oversight, terms are lost from Holm’s averaged
Euler equation. This loss appears to conflict with the claim made by Gjaja & Holm
(1996) that the order in which averaging the Lagrangian and implementing the virtual
displacement are undertaken is immaterial.

Although our conclusions generalize easily, we shall focus only on the Euler–α

equations for the motion of an inviscid non-rotating non-magnetic incompressible
uniform-density fluid. We provide the correct form of the averaged Euler equation
and derive it directly from Hamilton’s principle by taking proper account of the
relation between the mean velocity and the fluctuating displacement. The omission of
terms in Holm’s mean equation is serious because it leads to an averaged version of
Kelvin’s Theorem stating that the circulation round a closed loop moving with the
mean velocity is conserved. This attractive property of his equations is lost when the
omitted terms are restored.

Our paper is organized as follows. In §2, we sketch the classical derivation of
Euler’s equation from Hamilton’s principle first, in §2.1, from the natural particle-
path (Lagrangian) point of view, while, in §2.2, we provide the appropriate extensions
necessary to derive the result within the Eulerian framework. This review provides
a reference for our later refinements. In §3, we decompose the flow in two ways:
One is a hybrid Eulerian–Lagrangian (HEL) description discussed in §3.1, which
builds on the results of §2.1 and the other, described in §3.2, extends the Eulerian
description of §2.2. At this stage the basis of the decomposition is arbitrary so
as to emphasize its general structure. However when we take averages in §4, the
decompositions are defined on the basis of mean and fluctuating velocities, following
Andrews & McIntyre (1978a,b) in the HEL case of §3.1, and following Holm (2002b)
in the Eulerian case of §3.2. The various versions of the mean Euler equation are
compared, together with their consequences for the evolution of mean circulation,
in §4. We are only able to make quantitative comparisons between the HEL and
Eulerian mean equations in the small-displacement limit, which we consider in
§5. We add a few concluding remarks in §6, where we highlight our principal
results.

Unfortunately, we have needed to use ‘Lagrangian’ in two different senses: one in the
sense of a Lagrange density in the variational calculus; the other in connection with
the particle-path description of the flow. In what follows, the appropriate meaning
should be self-evident from the context in which ‘Lagrange’ and ‘Lagrangian’ are
used.
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2. Euler’s equation from Hamilton’s principle
Euler’s equation may be expressed succinctly in the form

Dt v + ρ−1∇p = 0 , (2.1a)

where v, ρ and p are the velocity, density and pressure respectively at position x at
time t and

Dt ≡ ∂t + v·∇ (2.1b)

is the material derivative. Throughout this paper we will be concerned with fluids of
constant density ρ = ρ0, for which the flow velocity is solenoidal

∇·v = 0 (2.2)

and Euler’s equation (2.1a) may then be expressed conveniently in the form

EEE = 0 , where EEE ≡ Dt v + ∇(p/ρ0) . (2.3a, b)

In this section we briefly review the derivation of Euler’s equation (2.3a) from
Hamilton’s principle. For an introduction to Hamilton’s principle as applied to
continuous systems, see for example Chapter 12 of Goldstein (1980). We begin
with the classical variational approach based on the Lagrangian flow description in
§2.1 and describe the modified approach based on the Eulerian flow description in
§2.2. The techniques described here are then adapted to accommodate alternative
hybrid flow descriptions in §3.

2.1. The Lagrangian description

As is well known, the Lagrangian flow description involves tracking a fluid particle
as it moves from some initial point a, at time t = t0, to its position, x� = x�(a, t),
at time t . We identify the value of a function, φ(x, t) (say), at this moving point by
the addition of the superscript �, and write φ�(a, t) = φ(x�(a, t), t). We call a and
x� the Lagrangian and Eulerian coordinates respectively. At various stages in this
paper, we wish to use one of the two vectors x� or a as the independent variable
and then call it x. So, for example, in (2.1)–(2.3) the independent variable is the
Eulerian coordinate x (= x�), while in this subsection the independent variable is
the Lagrangian coordinate x (= a) upon which the Eulerian coordinate depends:
x� = x�(x, t) . From this point of view, the addition of the superscript � to the
function φ is an ‘operation’ that determines

φ�(x, t) ≡ φ(x�(x, t), t) , (2.4)

i.e. though the argument of φ� is the Lagrangian coordinate x (= a), it determines the
value of φ elsewhere at the Eulerian position x�(x, t).

Though differentiation of φ�(x, t) is straightforward, we should be clear about what
happens and how the �–operator notation is used. To begin we note that its gradient
is

∂φ�

∂xi

=
∂x�

j

∂xi

(
∂φ

∂xj

)�

implying ∇�φ� = (∇φ)� , (2.5a, b)

since (∇�φ�)i ≡ ∂φ�/∂x�
i = (∂xk/∂x�

i ) (∂φ�/∂xk). In turn this result may be used to
establish that the rate of change of φ for an individual fluid particle is

∂t (φ
�) = (Dtφ)� with v� = ∂t (x�) = (Dt x)� . (2.6a, b)

With this notation Euler’s equation (2.1a) at the moving point x�(x, t) becomes

(Dt v + ρ−1∇p)� = ∂t (v
�) + (ρ�)−1∇�p� = 0 . (2.7)
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Though this form of Euler’s equation looks unfamiliar, it serves to emphasize that ∂t

in this context is the material derivative following the moving point x�.
Just as gradients with respect to x and x� are linked by (2.5a), line elements are

linked according to the relation dx�
i = (∂x�

i /∂xj ) dxj and, in consequence, volume
elements by d3x� = Jd3x , where J(x, t) = det (∂x�

i /∂xj ) is the Jacobian of the
transformation. Consider a material volume element d3x, located at the initial position
x = a at time t0. It has mass ρ0d

3x, where ρ0 = constant. Subsequently for t > t0 the
volume element moves with the fluid occupying the volume d3x� at its current position
x�(x, t), where its mass has become ρ�d3x�. Since mass is conserved it follows that

ρ�d3x� = ρ0 d3x implying Jρ� = ρ0 . (2.8a, b)

In anticipation of our variational derivation of Euler’s equation for a constant-
density fluid from Hamilton’s principle, we remark that we wish to find the stationary
value of a space–time integral of the kinetic energy density 1

2
ρ |v|2 under variations

of v subject to the constraint of incompressibility. Following standard practice for
such variational problems, we permit compressible variations but instead impose the
incompressibility constraint via the Lagrange multiplier method. To that end we
consider the Lagrange density

L(v, ρ, p) = 1
2
ρ |v|2 − p ((ρ/ρ0) − 1), (2.9a)

in which p is introduced as a Lagrange multiplier but will turn out to be the pressure
appearing in Euler’s equation (2.1a). Variation with respect to p will recover ρ = ρ0.
Until we do that, however, ρ like v and p must be regarded as a function of x and
t . We note that, although alternative Lagrange multiplier formulations are possible
involving the constraint ∇·v = 0 (see (2.2)) instead of ρ − ρ0 = 0, the choice (2.9a)
appears to be the most convenient form for our later developments in §3. This is
because, if we rewrite (2.9a) in the form

L(v, ρ, p) = p − ρ Π , where Π = (p/ρ0) − 1
2
|v|2, (2.9b, c)

ρ variations lead naturally to a term ∇Π , which is more fundamental than ∇p in the
hybrid Eulerian–Lagrangian developments of §3.1.

Following Goldstein (1980), the current state of a continuous system can be
described by a ‘point in an infinite-dimensional parameter space’. The parameters
are an infinite set of particle labels, for which we are here using their Lagrangian
coordinates a, though other choices are envisaged later. The evolution of the system
from an initially specified state at an initial time t0 to the state at the final time t1 can
be visualized as a ‘trajectory in this infinite-dimensional parameter space’. Hamilton’s
principle is concerned with the Action integral

A =

∫ t1

t0

L dt , where L =

∫
V0

JL� d3x =

∫
V�

L� d3x� (2.10a, b)

is the Lagrangian of the system and L� is the Lagrange density

L� = L(v�, ρ�, p�), where JL� = 1
2
ρ0|v�|2 − p� (1 − J) (2.11a, b)

(see (2.8b) and (2.9a)). The independent variables in the first integral
∫

V0
JL� d3x of

(2.10b) and second integral
∫

V� L� d3x� are the Lagrangian coordinate x (= a) ∈ V0

and the Eulerian coordinate x� ∈ V� respectively, where V0 and V� are the initial
t = t0 and current t0 � t � t1 volumes occupied by the fluid, i.e. the volume mapping
V0 �→ V� corresponds to the point mapping x �→ x�. Hamilton’s principle compares
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the value of the action integral A for the actual trajectory x�(x, t) with the action
integral for all other neighbouring ‘virtual trajectories’, which are displaced from the
actual trajectory, the positions of the particles being x�(x, t) + η�(x, t) where η�(x, t0)
= η�(x, t1) = 0; it is also required that the normal component of η�(x, t) vanishes
on the boundary of V� for all t . A virtual trajectory is said to be neighbouring
when η�(x, t) is infinitesimal. The dynamical equations are not in general satisfied
on a virtual trajectory. Hamilton’s principle is a variational statement that picks out
the trajectory on which the dynamics are satisfied. It states that the action integral
A, also simply called ‘the action’, for the actual trajectory takes a stationary value
compared with the action A + δA for all neighbouring virtual trajectories.

Though the virtual displacement η�(x, t) is defined in terms of its Lagrangian
coordinate x = a, it is often more convenient to adopt an Eulerian description
η(x�, t) of the displacement in terms of the Eulerian coordinate x�(x, t) from which
the particle suffers its infinitesimal displacement. Consistent with our superscript �

notation (2.4), we define η implicitly by

η�(x, t) = η(x�(x, t), t) . (2.12)

We write δφ for the Eulerian increment of a function φ(x, t) at fixed x caused by the
virtual displacement field η(x, t). It follows from this definition that the Lagrangian
increment δ(φ�) of the function φ(x�(x, t), t) following a trajectory from a fixed initial
position x = a is

δ(φ�) = (δφ + η·∇φ)� . (2.13a)

Since our virtual displacement does not preserve volume, the increment of J is given
by

δJ
J =

∂xk

∂x�
j

∂η�
j

∂xk

≡ (∇·η)� , (2.13b)

where we have involved a ‘chain rule’ similar to (2.5a). The result enables us to express
(2.13a) in the alternative form

δ(Jφ�) = J(δφ + ∇·(ηφ))�. (2.13c)

Since mass is conserved under the virtual displacement, it follows from (2.8b) that
δ(Jρ�) = 0. In view of our intended interpretation of the Lagrange multiplier p

as the Eulerian pressure field, we will assume that this field is unaltered under the
virtual displacement, i.e. δp = 0. To obtain the increments of ρ, p and v following a
trajectory, use of (2.13a, b) leads to the values

δ(ρ�) = − (ρ∇·η)� , δ(p�) = (η·∇ p)�, (2.14a, b)

while from (2.6a, b) we deduce that

δ(v�) = ∂t (η
�) = (Dt η)� . (2.14c)

The implementation of Hamilton’s principle requires that we determine the action
increment

δA =

∫ t1

t0

δL d t , where δL =

∫
V0

δ(JL�) d3x (2.15a, b)

(see (2.10)). Since (2.13c) implies

J(δL)� = δ(JL�) − J(∇·(Lη))�, (2.15c)
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we may also write (2.15b) in the more convenient form

δL =

∫
V0

J(δL)� d3x =

∫
V�

(δL)� d3x� , (2.15d)

because the contribution from
∫

V�(∇·(Lη))�dx� vanishes on application of the

divergence theorem and boundary conditions on η�. We evaluate J(δL)� by
substituting the values

JL� = 1
2
ρ0

∣∣v�
∣∣2 − p� (1 − J) and L = p − ρ Π , (2.16a, b)

determined by (2.8b) and (2.9), into the right-hand side of (2.15c). The result is

J(δL)� = ρ0v
�·δ(v�) + p�δJ − (1 − J) δ(p�) − J(∇·((p − ρ Π)η))�

= − ρ0 η�·EEE� + ∂t (ρ0η
�·v�) + J(∇·(ρηΠ))� , (2.16c)

in which we have used (2.13b), (2.14) and where EEE is defined by (2.3b).
For virtual trajectories both the time integral

∫ t1

t0
∂t

(
ρ0η

�·v�
)
dt and the volume

integral
∫

V�(∇·(ρηΠ))�d3x� vanish because of the temporal end-point and boundary
conditions. That leaves

δA = −
∫ t1

t0

∫
V0

ρ0η
�·EEE� d3x d t . (2.17)

Hamilton’s principle requires that δA = 0 for all such η� and Euler’s equation EEE = 0,
namely (2.3a), follows (albeit evaluated at the particle position x� rather than x).
Furthermore, the variational calculation now being complete, we can set ρ� = ρ0 so
that mass continuity reduces to the statement (2.2).

These ideas are developed further in the hybrid Eulerian–Lagrangian approach of
§3.1 below.

2.2. The Eulerian description

Since Hamilton’s principle builds on the notion of particle paths, the ‘first principles’
derivation of Euler’s equation in the previous subsection was naturally Lagrangian
in nature, relying on the labelling of particle paths by their initial position a. It
is not, however, necessary to remained locked to that point of view. Essentially all
that we need is the value of the increment of the first integral L =

∫
V� L� d3x� in

(2.10b) subject to the particle path constraint. So instead of considering Lagrangian
increments δ(φ�) at points x�(a, t) following the trajectory of a fluid particle, we
consider the Eulerian increments (δφ)� at fixed position x�. So from (2.13a) and
(2.14a, c), the Eulerian velocity and density increments at x� are

(δv)� = (Dt η − η·∇v)� , (δρ)� = − (∇·(ρη))� . (2.18a, b)

According to our variational assumption the Eulerian pressure increment vanishes
((δp)� = 0) and so the corresponding increment of the Lagrangian (2.9b) is

(δL)� = − ρ� (δΠ)� − Π� (δρ)� , where (δΠ)� = −v�·(δv)� (2.19a, b)

on use of (2.9c).
Since it is notationally inconvenient to use x� as the Eulerian coordinate, we replace

it by x. In consequence, functions of the form φ� and (δφ)� become simply φ and δφ.
For obvious reasons, we call this change of notation ‘dropping the �’. In application
of the idea it is important to realize that the � may only be dropped when it is the
final operation applied. For example, we can drop the � from (δφ)� but cannot drop it
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from δ(φ�) because that δ–operation is applied after the �–operation. On dropping the
� in the integrand of

∫
V�(δL)� d3x� (see (2.15d)), we obtain the increment δA[v, ρ, p]

of the action A[v, ρ, p] as

δA[v, ρ, p] =

∫ t1

t0

δL dt , where δL =

∫
V�

δL d3x ; (2.20a, b)

the arguments v, ρ, and p are listed explicitly to emphasize the functions upon which
the action increment now depends. Some care needs to be taken with regard to the
interpretation of the volume integral, in which the � has been dropped in the integrand
but not on the name V� of the region involved as it not stationary but moves with
the fluid. From (2.19) the increment of the Lagrangian density L is

δL = ρv·δv − Π δρ . (2.20c)

On dropping the � in (2.18), we obtain

δv = ∂tη + [v , η] , δρ = − ∇·(ρη) , (2.21a, b)

where the notation [ · , · ] means

[v , η] ≡ v·∇η − η·∇v . (2.21c)

On forming the scalar product of δv with an arbitrary vector field V (x, t), (2.21a)
yields the useful relation

V ·δv = V ·(∂tη + [v , η]) = − η·(∂t V + {v , V}) + Dt (η·V ) , (2.22a)

in which the notation { · , · } means

{v , V} ≡ v·∇ V + (∇ v) ·V , (2.22b)

where in component form ((∇ v) ·V )i = (∂vk/∂xi)Vk (see Appendix A, (A2a)). Though
our immediate applications in this section involve the choice V = v, we introduce
this more general notation for later use in §3.

Substitution of the values of δv and δρ given by (2.21a, b) into (2.20c) and use of
(2.22a) with V = v determines the increment

δL = − η·ρEEE + ρDt

(
η·v

)
+ ∇·(ηρΠ) , (2.23a)

where EEE emerges naturally in the form

EEE ≡ ∂tv + {v , v} + ∇Π . (2.23b)

As in the Lagrangian case of §2.1 above, it is important to appreciate that, though the
fluid is incompressible, the virtual displacement is allowed to cause density variations
(δρ �= 0). The only constraint on ρ, until all the variations have been completed, is
that it obeys the mass continuity equation

∂tρ + ∇·(ρv) = 0 . (2.24)

In preparation for our analysis in §3.2 below, we note that use of this equation allows
us to rewrite (2.23a) as

δL = − η·ρEEE + ∂t (η·ρv) + ∇·((η·ρv) v + ηρΠ) , (2.25a)

with (2.23b) expressed in the alternative form

ρEEE = ∂t (ρv) + 〈v , ρv〉 + ρ ∇Π , (2.25b)
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in which the notation 〈 · , · 〉 is defined in Appendix A by (A 2b). On returning to
the more primitive form (2.23b) we see that, since Jρ� = ρ0 (see (2.8b)), the value of
J(δL)� determined by (2.23a) coincides with our earlier result (2.16c). Accordingly
the action increment δA determined by (2.20) in our Eulerian analysis also agrees
with that, (2.17), obtained by following particle paths. This means that the vanishing
of δA obtained from our Eulerian point of view recovers EEE = 0 .

Significantly, in relation to our developments in the next section, we may write
expression (2.23b) for EEE as

EEE =
∂

∂t

(
1

ρ

δA
δv

)
+

{
v ,

(
1

ρ

δA
δv

)}
− ∇

(
δA
δρ

)
(2.26a)

in terms of the variational derivatives

1

ρ

δA
δv

= v , − δA
δρ

= Π (2.26b, c)

of the functional A[v, ρ, p] (see the action increment (2.20a)) obtained trivially from
(2.20c). Recalling the explicit form (2.9a) of the Lagrangian, we note that the p

variation of the action gives

δA
δp

=
ρ

ρ0

− 1 . (2.27)

Its vanishing recovers the fact that the fluid has constant density ρ = ρ0 with the
consequence that (2.24) reduces to (2.2).

Finally, when the virtual displacements are material line elements η = dx and the
flow is unperturbed δv = 0, (2.22a) shows that the material derivative of the scalar
product V · dx (for arbitrary V ) is

Dt (V · dx) =
(
∂t V + {v , V}

)
· dx . (2.28)

This result explains some of the attraction of Euler’s equation EEE = 0 with the
representation (2.23b) of EEE for, when V = v, together they yield yet another form

Dt (v· dx) = − d Π (2.29a)

of Euler’s equation. It may used to derive Kelvin’s circulation theorem

d

dt

∮
C�

v· dx = 0 (2.29b)

for material closed curves C� composed of points x, that move move with velocity
v(x, t).

3. Flow decompositions
The hybrid Eulerian–Lagrangian approach, pioneered by Soward (1972) in the

MHD context, and inspired by Braginsky’s (1964) development of kinematic dynamo
theory, provides the motivation for the flow decompositions that we discuss in this
section. Our survey in §3.1 closely follows Andrews & McIntyre (1978a) and also
Holm’s (2002b) subsequent development that stresses its variational basis. Only after
averages are taken, as outlined in the next subsection, do we reach the generalized
Lagrangian–mean description of Andrews & McIntyre (1978a) that Holm (2002b)
later refers to as the generalized lagrangian mean (GLM) approach. The complication
that plagues the GLM approach is that all variables refer to properties at displaced
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points (the hybrid Eulerian–Lagrangian (HEL) description). As we explain in §3.2,
Holm (2002b) attempts to bypass that difficulty by taking what is best of the HEL
approach by using variables that refer to properties at the actual undisplaced points
(the Eulerian description). Of course, that is exactly what Braginsky (1964) and later
Tough & Roberts (1968) were aiming for in their use of so-called ‘effective variables’.

Subsection 3.2 is the cornerstone of our paper. There we follow Holm (2002b)
by starting from Hamilton’s principle. We show however that Holm’s variational
procedures are in error because they fail to adhere to Hamilton’s recipe correctly. As
a result, key terms in Euler’s equation are lost. This is a significant result because the
equation, which Holm obtains provides the basis of his so-called ‘glm-approach’. We
discuss the consequences of this later.

A significant aspect of our new development concerns the size of the displacements
ξ and ζ , which we introduce in §3.1 and 3.2. We therefore stress that, throughout this
section and the following §4, no assumption is made about the magnitude of these
displacement vectors and so the results obtained are completely general. Only in §5 do
we follow Holm in making approximations based on small-amplitude displacements
in order to make careful comparisons with his results.

3.1. A hybrid Eulerian–Lagrangian (HEL) representation

Though the Lagrangian description of the flow introduced in §2.1 has many
attractions, not least that it provides the natural framework to apply Hamilton’s
principle, it is generally unwieldy to work with because x�(a, t) moves ever further
away from its starting point a, while the deformation matrix ∂x�

i /∂xj (a, t) generally
increases in concert. This means that problem-solving based on Euler’s equation
EEE� = 0 for the functions v�(x, t) and x�(x, t) is not feasible. Even the kinematic task
of determining closed-form solutions for the particle paths x�(x, t) from an initial
position x = a with given v�(x, t) is generally intractable.

To avoid the difficulties mentioned, we will develop the HEL approach; it works in
the following way. We introduce a fictitious (or reference) flow, for which the position
xΛ(a, t) reached by a reference fluid particle is distinct from the true particle position
x�(a, t). So instead of considering a map a �→ x� as in §2, we partition it into two
and consider the map a �→ xΛ followed by xΛ �→ x�. Our objective is to express the
equation of motion at the Eulerian coordinate x� in terms of the HEL coordinate xΛ

rather than the Lagrangian coordinate a.
For the first map a �→ xΛ, we note that the kinematic apparatus set up in §2.1 for

the real flow can be taken over largely intact for the reference flow. So we define the
Λ–operation in the same way, use x for the Lagrangian coordinate and write

φΛ(x, t) = φ(xΛ(x, t), t) (3.1)

(cf. (2.4)) while the gradient ∇Λ is defined by (2.5) with x� replaced throughout by xΛ.
We introduce uΛ(x, t) to describe the motion of the reference flow at xΛ(x, t), which,
like v�(x, t) (see (2.6b)), is defined by

uΛ(x, t) ≡ u(xΛ(x, t), t) = ∂t (xΛ) . (3.2)

This provides an implicit definition of the velocity u(x, t), that is central to the analysis
that follows. In particular, by analogy with (2.6a), the time derivative of a function
φΛ(x, t) = φ(xΛ(x, t), t) is

∂t (φ
Λ) = (Dtφ)Λ , where Dt ≡ ∂t + u·∇ (3.3a, b)
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is the material derivative, replacing (2.1b), associated with the reference flow velocity
u. In order to be clear on the status of the reference velocity field u(x, t), we note
that it coincides with the real velocity field v(x, t) in the case of the pure Lagrangian
description, when xΛ(x, t) = x�(x, t).

To accomplish the second map xΛ �→ x� we introduce the coordinate shift function
xL(x, t) with the property that the true particle position x� is reached after application
of the Λ–operation:

x�(x, t) = (xL)Λ(x, t) = xL(xΛ(x, t), t) . (3.4a)

In what follows, xL(x, t) will be written

xL(x, t) = x + ξ (x, t) , (3.4b)

the advantage of which becomes apparent in §5 where |ξ | is assumed to be small. We
emphasize, however, that the development in this subsection does not depend on that
smallness and is therefore completely general.

We call functions

φL(x, t) ≡ φ(xL(x, t), t) , (3.5a)

evaluated at xL, HEL variables, while the position x, upon which xL depends, is
the HEL coordinate. They have the property that the value of φ at the true particle
position x� is obtained on application of the Λ–operation:

φ�(x, t) = (φL)Λ(x, t) = φL(xΛ(x, t), t) = φ((xL)Λ(x, t), t) = φ(x�(x, t), t). (3.5b)

From this point of view, the Lagrangian variable φ� and the HEL variable φL are
identical, provided the argument of the former is the Lagrangian coordinate x = a
and the argument of the latter is the HEL coordinate x = xΛ(a, t); that is the sense
in which we use the notation. To effect the change of dependent variable from a to
xΛ, we introduce the ‘dropping the Λ ’ process by analogy with the ‘dropping the � ’
process described below (2.19).

We begin the application of our apparatus to the Eulerian velocity field v(x, t) =
Dt x (see (2.1b)). The corresponding Lagrangian velocity v�(x, t) = ∂t (x�) is obtained
by setting x� = (xL)Λ and replacing φ in (3.3a) by xL. The result is

v� = ∂t

(
(xL)Λ

)
= (Dt xL)Λ , (3.6a)

which, since v� = (vL)Λ, establishes the equality (vL)Λ = (Dt xL)Λ. Since the Λ–
operation is the last to be applied on both sides of the equality, the Λ may be
dropped yielding the HEL velocity

vL = (Dt x)L = Dt xL = u + Dtξ . (3.6b)

Likewise the Eulerian form Dtφ for the material derivative of φ, when evaluated at
x�, is (Dtφ)�(x, t) = ∂t (φ

�) (see (2.6a)). So on writing φ� = (φL)Λ and replacing φ

in (3.3a) by φL, we obtain the alternative identity ∂t (φ
�) = (Dtφ

L)Λ. Then recalling
that (Dtφ)� = ((Dtφ)L)Λ, the two separate representations for ∂t (φ

�) determine the
identity ((Dtφ)L)Λ = (Dtφ

L)Λ. Finally, dropping the Λ determines the HEL material
derivative

(Dtφ)L = Dtφ
L . (3.7)

Linked to the reference flow u, defined by (3.2), we introduce the concept of
the reference mass density σ . Just as we define uΛ in (3.2), we write σΛ(x, t) =
σ (xΛ(x, t), t) to identify the value of σ at xΛ(x, t). Accordingly reference mass
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conservation requires that the mass element
(
σΛd3xΛ

)
(x, t) advected by the reference

flow from the initial position x = a at time t = t0 remains unaltered and continues
to take the initial value σ (x, t0) d3x. This corresponds to the result (2.8a), namely(
ρ�d3x�

)
(x, t) = ρ0 d3x, for the real flow. Though the choice of initial reference

density σ (x, t0) is not unique, it is natural to assume that it coincides with the initial
real fluid density ρ0. So, since both our conserved masses ρ�d3x� = (ρLd3xL)Λ and
σΛd3xΛ = (σ d3x)Λ are equal to ρ0 d3x, we have (σ d3x)Λ = (ρLd3xL)Λ, which on
dropping the Λ gives

σ d3x = ρLd3xL implying JρL = σ , (3.8a, b)

where J (x, t) = det (∂xL
i /∂xj ) is the Jacobian and x is now the HEL rather than

the Lagrangian coordinate. We remark that, even for our incompressible case, it is
generally convenient to allow for dilatation J �= 1 of the reference flow. Accordingly,
σ may vary and consequently u is not solenoidal, ∇·u �= 0. So, unlike the true
Lagrangian case u = 0, the density σ is not simply ρ0 but evolves with time, satisfying
the mass continuity equation

∂tσ + ∇·(σ u) = 0 . (3.9)

At this point, it is important to appreciate that the flow description in the HEL
approach is not unique, a feature that is transparent from the particle-path description
x�(a, t) = xL(xΛ(a, t), t) involving two independent functions xL = xL(x, t) and xΛ =
xΛ(x, t). So the specification of the virtual displacement η�(a, t) = η(xL(xΛ(a, t), t)
of the particle path is not unique either; we may vary either xL or xΛ alone,
or both simultaneously. To appreciate the structure, we consider the general case of
simultaneous variation, for which xΛ and xL are subject to the infinitesimal increments
µΛ and δ(xL) respectively.

Linked to the reference flow u, defined by (3.2), we may introduce the concept of its
associated virtual displacement field µ such that the reference particle displacement
at xΛ as a function of the Lagrangian coordinate x is

µΛ(x, t) = µ(xΛ(x, t), t) (3.10)

similar to the definition (2.12) for the real particle displacement η. Then increments
of functions φΛ(x, t) at fixed x due to virtual reference particle displacements µ are
given exactly as in (2.13a) with the η replaced by µ:

δ(φΛ) = (δφ + µ·∇φ)Λ . (3.11)

Then repeating the arguments, that lead to the formulae (2.21a, b) for the increments
of v and ρ of the real flow, gives

δu = ∂tµ + [u , µ] , δσ = − ∇·(σµ) (3.12a, b)

for the increments of the reference velocity and density, where, having dropped the
Λ, x is now the HEL coordinate.

The virtual displacement for the real flow may be expressed as η� = δ(x�)
or equivalently as (ηL)Λ = δ((xL)Λ). Then application of the formula (3.11) to
the increment followed by dropping the Λ leads, on use of (3.4b), to the HEL
representation of the virtual path displacement

ηL = δξ + µ·∇xL , in which δξ = δ(xL) . (3.13)

Likewise the Lagrangian velocity increment δ(v�) = ∂t (η
�) may be written, with the

help of (3.3a), in the form δ((vL)Λ) = ∂t ((η
L)Λ) = (Dtη

L)Λ. Evaluation of δ((vL)Λ)
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using (3.11) leads, after the Λ is dropped, to the Lagrangian velocity increment

δ(vL) + µ·∇vL = Dt (δξ + µ·∇xL) (3.14a)

resulting from following the material particle displacement. From this we deduce that
the HEL velocity increment, at fixed HEL coordinate x, may be expressed in terms
of the increments δξ and δu alone as

δ(vL) = Dt δξ + δu · ∇xL . (3.14b)

Though this result can also be obtained directly from incrementing vL as defined by
(3.6b), the above longer derivation has enabled us to develop the general structure
that we need to apply to Hamilton’s principle.

The original incrementation (2.13a) in our new notation is

δ(φ�) = ((δφ)L)Λ + ((η·∇φ)L)Λ . (3.15a)

An alternative expression of δ(φ�) = δ((φL)Λ) is obtained from (3.11) which, together
with (3.13) and after dropping the Λ, determines the HEL increment

δ(φL) = (δφ)L + δξ ·∇LφL . (3.15b)

So, since the Eulerian pressure increment vanishes (δp)L = 0, the HEL pressure
increment is

δ(pL) = δξ ·∇LpL and δJ = J ∇L· δξ , (3.16a, b)

similar to (2.14b) and (2.13b); recall that we are using the L–operation in the sense
of the definition (3.5a).

In our new notation, the action increment (2.15d) becomes

δL =

∫
V�

(δL)� d3x� =

∫
VΛ

(
(δL)L

)Λ (
Jd3x

)Λ
, (3.17a)

where the region VΛ is composed of the points xΛ mapped from V0 by x(= a) �→ xΛ.
On dropping the Λ in the integrand, this becomes

δL =

∫
VΛ

J (δL)L d3x . (3.17b)

Further use of (3.15b) and (3.16b) leads to the HEL form

J (δL)L = δ(JLL) − J∇L·(LLδξ ) (3.17c)

of the integrand (cf. (2.15c)), in which

JLL = 1
2
σ

∣∣vL
∣∣2 − pL

(
(σ/ρ0) − J

)
= JpL − σΠL . (3.17d)

We formalize our procedures by identifying the variables on which our action (2.10)
depends and write

(A ≡) A[u, ξ , σ, pL] =

∫ t1

t0

∫
VΛ

JLL d3x d t . (3.18)

Two distinct formulations of Euler’s equation emerge on varying only one of the
virtual displacements δξ and µ that determine the HEL specification of the virtual
displacement ηL of the material particle.

We begin with the choice

µ = 0 , for which δu = 0 , δσ = 0 (3.19a–c)
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(see (3.12a, b)). With (3.13) this determines

δξ = ηL . (3.20)

In turn (3.14b) shows with the help of (3.7) that

δ(vL) = Dt η
L = (Dt η)L (3.21a)

similar to (2.14c) but with the � replaced by L. Furthermore (3.16a, b) gives

δ(pL) = (η·∇p)L and δJ = J (∇·η)L . (3.21b, c)

Armed with the increment values (3.19b, c) and (3.21), we may evaluate the action
increment (3.17b), whose integrand (3.17c) becomes

J (δL)L = σvL·δ(vL) − ((σ/ρ0) − J )δ(pL) + pLδJ − J (∇·(η(p − ρΠ)))L

= − σ ηL·EEEL + σ
(
Dt (η·v)

)L
+ J

(
∇·(ηρΠ)

)L
. (3.22)

On substituting σ = JρΛ, dividing by J and then dropping the Λ, we recover the
expression (2.23a) for δL obtained in §2.2. From a formal point of view, the separate
application of the increments δ(pL) and δξ = ηL, as in (3.22), determines via (3.18)
the variational derivatives

1

J

δA

δ(pL)
=

ρL

ρ0

− 1 and − 1

σ

δA

δξ
= EEEL (3.23a, b)

respectively. Their vanishing recovers

ρL = ρ0 and EEEL = 0 . (3.23c, d)

We consider next the choice

δξ = 0 , for which δJ = 0 . (3.24a, b)

With δξ = 0 the HEL displacement (3.13), velocity (3.14b) and pressure (3.16a)
increments reduce to

ηL = µ·∇xL , δ(vL) = δu · ∇xL , δ(pL) = 0 (3.25a–c)

respectively. Using these values and expression (3.17d) for JLL, the increment (3.17c)
becomes

J (δL)L = δ(JLL) = − δ(σΠL) = σvL·δ(vL) − ΠLδσ

= σ V ·δu − ΠLδσ , (3.26a)

where

V = (∇xL) · vL has the property µ·V = ηL·vL . (3.26b, c)

Then substitution of the values (3.12a, b) for δu and δσ leads to

J (δL)L = − µ·σ E + σDt (µ·V ) + ∇·(µσΠL) , (3.27a)

where

E = ∂t V + {u , V} + ∇ΠL . (3.27b)

Furthermore, it may be shown directly that

E = (∇xL) · EEEL with the property µ·E = ηL· EEEL
. (3.27c, d)

In view of the relations (3.24a) to (3.26c), the terms δ(JLL), σDt (µ·V ) and ∇·(µσΠL)

in (3.27a) are respectively equal to J (δL)L, σ (Dt (η·v))L and J
(
∇·(ηρΠ)

)L
in (3.22).
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In consequence, the remaining terms −σηL·EEEL and −µ·σ E are necessarily equal too,
consistent with (3.27c). By analogy with the Eulerian study of §2.2, our modified
development leads to the HEL formulation

E = 0 (3.28)

of Euler’s equation. Evidently we may express (3.27a) as

E =
∂

∂t

(
1

σ

δA

δu

)
+

{
u ,

(
1

σ

δA

δu

)}
− ∇

(
δA

δσ

)
(3.29)

in terms of the functional derivatives

1

σ

δA

δu
= V = vL + V P , −δA

δσ
= ΠL ≡ pL

ρ0

− 1
2
|vL|2 (3.30a, b)

derived trivially from (3.26a) where, since xL = x + ξ (see (3.4b)),

V P = (∇ξ ) · vL . (3.30c)

The quantity ρ0V P is often referred to as the pseudo-momentum at xL.
Finally, since

Dt (V · dx) =
(
∂t V + {u , V}

)
· dx (3.31a)

(cf. (2.28)), Kelvin’s circulation theorem (2.29b) may be expressed in the form

d

dt

∮
CΛ

V · dx = 0 (3.31b)

for closed curves CΛ composed of points x, that move with the reference velocity
u(x, t). We stress that the HEL Euler’s equation E = 0 (see (3.28)) concerns the state
of the flow at the displaced points xL rather than x. This means that (3.31b) is simply
a reiteration of (2.29b) evaluated for circuits C� composed of points xL moving with
velocity vL, i.e. ∮

C�

vL· dxL =

∮
CΛ

V · dx . (3.31c)

3.2. An Eulerian representation

The usage of the HEL representation is generally restricted to small |ξ |, as we
explain in §5 below. So using the Taylor series results v = vL − ξ ·∇vL + O(|ξ |2) and
ρ = ρL − ξ ·∇ρL + O(|ξ |2) (derivable from (5.1) below), we see that the flow has the
Eulerian representation v = u + (∂tξ + [u, ξ ]) + O(|ξ |2) and ρ = σ − ∇·(σ ξ ) + O(|ξ |2)
(derivable from (3.6b) and (3.8b) but cf. (2.21a, b)). To take advantage of the HEL
representation in an Eulerian setting, Holm (2002b) has proposed replacing u, σ and
ξ by new variables v(x, t), ρ(x, t) and ζ (x, t), which differ from them only at O(|ξ |2)
(see (5.3a, c) below), such that the relations,

v = v + v′ and ρ = ρ + ρ ′ (3.32a, b)

with

v′ = ∂tζ + [v , ζ ] and ρ ′ = − ∇·(ρ ζ ) , (3.32c, d)

are exact. At this stage the overbar does not mean the average value that it will in
later sections. So for the moment v is arbitrary and not the average value of v. This
also implies that the decomposition (3.32) is not unique as we are free to choose
one or other of v and ζ at our convenience, just as we do for u and ξ in §3.1. To
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stress that the arguments v = v(v, ζ ) and ρ = ρ(ρ, ζ ) of the action A[v, ρ, p], whose
variation is given by (2.20a), vary parametrically in response to variations of v, ρ and
ζ , we introduce the notation

AE[v, ρ, ζ , p] ≡ A[v(v, ζ ), ρ(ρ, ζ
)

, p] . (3.33)

Because the fluid has constant density ρ = ρ0 (a result recovered by the vanishing of
the p variation as in (2.27)), it is natural to assume that ρ = ρ0 together with ∇·v = 0.
It follows that

ρ ′ = 0 and ∇·ζ = 0 (3.34a, b)

from (3.32d). Then, with the help of the identity ∇·[v , ζ ] = ∇·(v ∇·ζ − ζ ∇·v) (see
Appendix A, (A1b)), the divergence of (3.32c) shows that

∇·v′ = 0 , since ∇·v = 0 . (3.34c, d)

As in §2.2, the results (3.34) cannot be used until the calculation of the required
variational derivatives is complete.

Consider the virtual increments δv and δρ of the velocity v = v(v, ζ ) and the
density ρ = ρ(ρ, ζ ) caused by virtual displacement of the particle paths. In terms of
the increments δv, δρ and δζ , the flow composition (3.32) enables us to express the
result as

δv = δv + δv′ and δρ = δρ + δρ ′ , (3.35a, b)

where

δv′ = ∂t δζ + [v , δζ ] + [δv , ζ ] and δρ ′ = − ∇·(ρ δζ ) − ∇·(δρ ζ ) . (3.35c, d)

Note the similarity of the Eulerian expression (3.35c) for δv′ with the corresponding
HEL form δ(vL) − δu = Dt δξ + δu · ∇ξ obtained from (3.14b). Thus the increment

δAE =

∫ t1

t0

∫

Vℓ

δL d3x dt (3.36a)

of the action (3.33) (see (2.15d)) with δL = ρv·δv − Πδρ (see (2.20c)) determined by
the virtual increments (3.35) is given by

δL = ρv·(δv + [δv , ζ ] + ∂t δζ + [v , δζ ]) − Π(δρ − ∇·(δρ ζ ) − ∇·(ρ δζ )). (3.36b)

It may be expressed in the usual way as

δL =

(

δAE

δv

)

· δv +

(

δAE

δρ

)

δρ +

(

δAE

δζ

)

· δζ

+ ∂t (ρv·δζ ) + ∇·

(

− ζ (ρv·δv) + Π ζ δρ + v(ρv·δζ ) + ρΠ δζ
)

, (3.37a)

where, in terms of the 〈 · , · 〉 notation introduced in Appendix A and defined by
(A2b),

δAE

δv
= ρv + 〈ζ , ρv〉 , −

δAE

δρ
= Π + ζ ·∇ Π , (3.37b, c)

−
δAE

δζ
= ∂t (ρv) + 〈v , ρv〉 + ρ ∇Π . (3.37d)

Some care must be taken in our interpretation of the definitions (3.37b–d) as the
incrementation of L with respect to the separate variations of v, ρ and ζ leads to
extra terms that do not vanish on application of the boundary conditions implied
by Hamilton’s principle. For example, varying v keeping ρ and ζ fixed gives δL =
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(δAE/δv)·δv − ∇·(ζ (ρv·δv)) and on application of the divergence theorem the surface
integral of the normal component of ζ (ρv·δv) does not in general vanish. The same
remark applies to the increment of δL caused by the separate variations of ρ and ζ .
This is an unattractive feature of our Eulerian presentation, which did not happen
when u and σ were varied separately in the HEL development of §3.1. Nevertheless,
once the increments δv, δρ and δζ have been correctly related to the virtual path
displacement η, we are able in Appendix B to show that the combined surface
contribution as well as the initial t = t0 and final t = t1 time contributions, all
identified by (3.37a), do indeed vanish. This result validates our key formula (3.43)
below for EEE.

Let us first consider the special case ζ = 0, for which v′ = 0, ρ ′ = 0 and in
consequence v = v, ρ = ρ. When we apply the virtual path increment η, we recover
the development of §2.2 upon setting δv = 0, δρ = 0 and δζ = η. Then (3.37a) reduces
to (2.25a), in which

ρEEE = − δAE

δζ

∣∣∣∣
ζζζ=0

(3.38)

(cf. (2.25b) with (3.37d)). Of course, when ζ = 0 the values of δAE/δv and δAE/δρ

defined by (3.37b, c) are equal to the values of δA/δv and δA/δρ defined by (2.26b, c).
From a formal point of view, if we adopt the alternative strategy of setting δζ = 0
so that δv′ = 0 and δρ ′ = 0 and then invoke the representations (2.21a, b) for δv and
δρ, we recover Euler’s equation in the form EEE = 0 based on (2.26a).

For the general case ζ �= 0, which is the concern of this section, we have v′ �= 0 and
v �= v. Then the attractive result (3.38) no longer holds. Thus to apply Hamilton’s
principle, we need to link δv, δv′ and δζ to η in some non-trivial way. To that
end we note that just as the decomposition v = v + v′ is not unique, neither is the
decomposition δv = δv + δv′, as our discussion above of the special case ζ = 0
emphasized. Since δv′ is determined by δv and δζ , the various possible dependences
of δv and δζ on η need to be explored.

Guided by the HEL choice δu = 0 (see (3.19b)) of §3.1, which has the useful
consequence δξ = ηL (see (3.20)), we consider the implications of setting δv = 0 with
δv = δv′. From (2.21a) and (3.35a, c) it follows that

∂t (δζ − η) + [v , (δζ − η)] = [v′ , η] (δv = 0). (3.39)

So when v′ �= 0, we no longer have the simple solution δζ = η adopted for the special
ζ = 0 case and in this important respect our development cannot parallel the HEL
analysis of §3.1 based on δξ = ηL. Instead our choice δv = 0 necessitates solving
the inhomogeneous equation (3.39) for the difference vector δζ − η. This leads to a
non-local relationship between δζ (x, t) and the given displacement field η(x, t), which
is inconvenient for the application of Hamilton’s principle.

Consider now the general case δv �= 0. As in our derivation of (3.39), we equate
the expressions for δv given by both (2.21a) and (3.35a, c). After some algebra, which
involves use of the identity (A1c) in Appendix A and the help of (3.32c), we may
derive

∂t � + [v , � ] = δv − (∂tη + [v , η]) − [ζ , (δv − (∂tη + [v , η]))], (3.40a)

where

� = [ζ , η] − δζ . (3.40b)
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A similar calculation, which equates the expressions for δρ given by both (2.21b) and
(3.35b, d), leads with the help of (3.32d) to

− ∇·(ρ � ) = δρ + ∇·(ρ η) − ∇·(ζ (δρ + ∇·(ρ η))). (3.40c)

Clearly the choice

δv = ∂tη + [v , η] and δρ = − ∇·(ρ η) , (3.41a, b)

which is similar to (2.21a, b) but with v and ρ replaced by v and ρ respectively,
ensures that the right-hand sides of both (3.40a) and (3.40c) vanish. This fortuitous
situation means that what is left of (3.40a, c) has the trivial solution � = 0 :

δζ = [ζ , η] . (3.42)

This choice, which we now adopt, provides a natural way of defining the increment
δζ in terms of the given virtual displacement η so as to ensure that the velocity and
density increments δv and δρ (see (3.35a, b)) are determined correctly by (3.41) and
(3.35c, d). That is all we need. Any boundary conditions on the virtual displacement
η such as its vanishing at the initial and final times must, of course, be adhered to but
there are no further independent boundary conditions on δζ . So for example, there is
no requirement that δζ vanishes at the initial and final times. Instead δζ simply takes
the value (generally non-zero) that (3.42) dictates.

Upon substitution of the values of δv, δρ and δζ given by (3.41a, b) and (3.42) into
(3.37a), we may recover the expression (2.25a) for δL, in which ρEEE is now given by

ρEEE =
∂

∂t

(
δAE

δv

)
+

〈
v ,

δAE

δv

〉
+

〈
ζ ,

δAE

δζ

〉
− ρ ∇

(
δAE

δρ

)
. (3.43)

The verification of this claim involves some lengthy algebra, which we outline briefly
in Appendix B.

So far all the variational derivatives have been calculated on the basis that
compressible variations are admissible. Application of Hamilton’s principle as in
§2.2 recovers EEE = 0, where now (3.43) is evaluated for the incompressible unperturbed
state ρ = ρ = ρ0 with ∇·ζ = 0, ∇·v = 0 (see (3.34b, d)). Then, in view of (A2c) in
Appendix A, all our 〈 · , · 〉 operations reduce to { · , · } operations and in consequence
(3.43) leads to the new variational form

EEE ≡ ∂

∂t

(
1

ρ

δAE

δv

)
+

{
v ,

(
1

ρ

δAE

δv

)}
+

{
ζ ,

(
1

ρ

δAE

δζ

)}
− ∇

(
δAE

δρ

)
= 0 (3.44)

of Euler’s equation, in which (3.37b–d) reduce to

1

ρ

δAE

δv
= V E ≡ v + {ζ , v} , − δAE

δρ
= ΠE ≡ Π + ζ ·∇ Π , (3.45a, b)

− 1

ρ

δAE

δζ
= ∂tv + {v , v} + ∇Π . (3.45c)

Equation (3.44) may be compared with the fourth bullet point equation on p. 268 of
Holm (2002b), which he refers to as ‘the Euler-Poincaré equation’ (EP equation). This
omits our penultimate term in (3.44) although, since ζ �= 0, it is not generally zero:{

ζ ,

(
1

ρ

δAE

δζ

)}∣∣∣∣
ζζζ �=0

�= 0 . (3.46)

The point that we wish to emphasize is that at ζ = 0 we have two distinct variational
derivative forms (3.38) and (2.26a) for EEE, which may be used in Euler’s equation
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EEE = 0. This is in contrast with the case ζ �= 0. Then we only have the one form (3.44),
in which the additional term (3.46) appears that cannot be ignored. Put another way,
the form of (3.44) tells us that we cannot vary the action integral by incrementing
v alone. For if we did and held ζ fixed, the velocity increment δv would not simply
be δv but contain the additional contribution δv′ = [δv , ζ ] (see (3.35c)). To take
proper account of the virtual path displacement, we must simultaneously increment
ζ as specified by (3.42); Holm (2002b) does not do that.

Continuing with the case ζ �= 0, we rewrite (3.45c) in the form

− 1

ρ

δAE

δζ
= EEE − {v′ , v} , (3.47)

where we have employed the representation (2.23b) of EEE. The substitution of this
value of δAE/δζ into (3.44) suggests that we should construct

EE ≡ EEE + {ζ , EEE} . (3.48a)

Then upon substitution for the remaining variational derivatives δAE/δv and δAE/δρ

(see (3.45a, b)), we obtain

EE ≡ ∂t V E +
{
v , V E

}
+ {ζ , {v′ , v}} + ∇ΠE . (3.48b)

Since EEE = 0, this provides a new form,

EE = 0 , (3.48c)

of Euler’s equation. Significantly, the omission on p. 268 of Holm (2002b), noted
above, is perpetuated in his Section 4.6 on p. 275. There, his EP equation halfway
down the page omits our term {ζ , {v′ , v}} but is otherwise identical to (3.48b), at any
rate after averaging as in our (4.7a) below. It should be stressed that our equations
(3.44) and (3.48b, c) are exact and do not assume that ζ is small. Of course, (3.48b, c)
may be derived directly from Euler’s equation (2.1a) without any appeal to Hamilton’s
principle.

We introduce the notion of the material derivative

DE
t ≡ ∂t + v·∇ (3.49a)

following points moving with velocity v for which

DE
t

(
V E· dx

)
=

(
∂t V E + {v , V E}

)
· dx . (3.49b)

Following the arguments at the end of §2, Kelvin’s circulation theorem (2.29b) becomes

d

dt

∮
CE

V E· dx = −
∮

CE

{ζ , {v′ , v}} · dx (3.50)

for closed curves CE composed of points x, that move with velocity v(x, t).
For our later developments, we follow Holm (2002b) and express the difference

V E − v = {ζ , v} (= ζ ·∇v + (∇ζ )·v) = vs + V p (3.51a)

(see (3.45a)), as the sum of the constituent parts

vs = ζ ·∇ v , V p = (∇ ζ ) · v (3.51b, c)

of {ζ , v}. The superscripts s and p are used to signify that vs and ρ0V p are parts of
the Stokes drift vS (see (4.3a) below) and pseudo-momentum ρ0V P (see (4.4) below).

The remainder of our paper concerns the relation between Euler’s equation EE = 0
involving the advective velocity v (see (3.48b, c)) and the previous HEL version
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E = 0 involving the advective velocity u (see (3.27b) and (3.28)). In preparation for
that discussion, we introduce v into the HEL version and write

E ≡ ∂t V + {v , V} +
{

vS , V
}

+ ∇ΠL = 0 , (3.52a)

where vS is the velocity difference

vS = u − v satisfying ∇·u = ∇·vS (3.52b, c)

since ∇·v = 0 (see (3.34d)). Thus a form of Kelvin’s circulation theorem involving the
convective velocity v similar to (3.50) is

d

dt

∮
CE

V · dx = −
∮

CE

{
vS , V

}
· dx . (3.53)

The relevance of this equation becomes apparent after averages are taken in the next
section and vS turns out to be the Stokes drift velocity (see (4.1d) and (4.3a)).

4. Averages
The flow decompositions set up in the previous section provide frameworks for

analysing flow fluctuations v′ superimposed on a basic mean flow v. Henceforth the
overbar denotes that an average is taken, while the prime denotes the remaining
fluctuating part. So on writing v′ = v − v we have v′ = ∂tζ + [v , ζ ] = 0 (see (3.32c)),
a condition that is met when ζ = 0. In the same spirit we demand in the Lagrangian
representation that u has no fluctuating part so that u = u, while ξ has no mean
part ξ = 0. The immediate consequence of these assumptions is that the material
derivatives Dt and DE

t , defined by (3.3b) and (3.49a) respectively, relate to mean

velocities. It then follows from (3.6b) that vL = u and Dtξ = 0. In summary our basic
assumptions are

ξ = ζ = 0 and Dtξ = 0 , DE
t ζ = 0 , (4.1a–c)

where

u = vL . (4.1d)

It should be pointed out however that v and u are unequal. More generally the
average of the material derivatives of φL (see (3.5a)) and φ satisfy

DtφL = Dt φL , DE
t φ = DE

t φ . (4.2)

We define a new vector v† via the velocity difference

vS ≡ vL − v = vs + v† , (4.3a)

where vs is given by (3.51b). Since vL = u, the average vS = vL − v is consistent with
(3.52b) and called the Stokes drift. We note that the fluctuating part of vS is

vS ′ ≡ vS − vS = ∂t (ξ − ζ ) + [v , (ξ − ζ )] + ξ ·∇vL , (4.3b)

which serves to emphasize that ξ and ζ are distinct vectors. In the spirit of (4.3a), we
also introduce V † defined by

V P = V − vL = V p + V † , (4.4)

where V , V P and V p are given by (3.26b), (3.30c) and (3.51c) respectively. Next, we
add (4.3a) and (4.4) to eliminate vL:

vS + V P = V − v =
(
vs + V p

)
+

(
v† + V †). (4.5a)
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Then, recalling that V
E − v = vs + V

p (see (3.51a)), (4.5a) yields the result

V − V
E = v† + V

† , (4.5b)

which we need in the next section to understand the relation between the equations
for V and V

E . Essentially, the sum v† + V
† measures the difference V − V

E .
Now we may average our various forms of Euler’s equation to obtain several mean

Euler equations. First, the average of the elementary representation EEE = 0 with EEE
given by (2.23b) is

EEE = ∂tv + {v , v} + {v′ , v′} + ∇ Π = 0 , ∇·v = 0 . (4.6a, b)

In consequence, for material closed curves CE moving with the mean velocity v,
Kelvin’s circulation theorem (2.29b) takes the form

d

dt

∮

CE

v· dx = −

∮

CE

{v′ , v′}· dx . (4.6c)

Second, the average of (3.48b) is

E
E = ∂t V

E +
{

v , V
E
}

+ {ζ , {v′ , v}} + ∇ ΠE = 0 , (4.7a)

for which
d

dt

∮

CE

V
E

· dx = −

∮

CE

{ζ , {v′ , v}}· dx (4.7b)

or alternatively, on use of the identity (A2d) in Appendix A in the definition (3.45a)
of V

E ,

d

dt

∮

CE

(v − ζ × (∇ × v′)) · dx = −

∮

CE

{ζ , {v′, v}} · dx (4.7c)

(cf. eq. (4.11) on p. 275 of Holm (2002b); there, of course, the right-hand side of (4.7c)
is replaced by zero, but otherwise his eq. (4.11) is equivalent).

As in all mean-field approaches, the heart of the difficulty in the use of (4.6c) and
(4.7b) lies in the evaluation of the averages {v′ , v′} and {ζ , {v′ , v}} respectively. To
obtain them we need knowledge of v′ and, in the case of (4.7), of ζ also.

In the case of the HEL formulations we may proceed similarly and average (3.52a)
to obtain

E = ∂t V +
{

v , V
}

+
{

vS , V
}

+ ∇ΠL = 0 (4.8a)

so that the average of (3.53) becomes

d

dt

∮

CE

V · dx = −

∮

CE

{

vS , V
}

dx . (4.8b)

Finally the average of (3.28) with E given by (3.27b) is

E = ∂t V +
{

vL , V
}

+ ∇ΠL = 0 (4.9a)

so that the average of (3.31b) is simply

d

dt

∮

CL

V · dx = 0 . (4.9b)

The point that we wish to emphasize is that, in view of (4.6c), (4.7b) and (4.8b),

none of the circuit integrals
∮

CE v· dx,
∮

CE V
E

· dx and
∮

CE V · dx remain constant when

advected by the mean flow v. On the other hand, (4.9b) shows that
∮

CL V · dx remains

constant when advected by the mean flow vL. These results illustrate the fact that



The Navier–Stokes–alpha equations 317

any mean field theory that wishes to preserve mean circulation under advection by a
mean flow must choose that flow to be vL.

5. Small-amplitude fluctuations
The aim of this section is to clarify the relationship between the Eulerian and

Lagrangian approaches of §3. The main difficulty in reaching this objective arises
from the nature of the Lagrangian approach, which describes properties at a displaced
point xL rather than at x itself. Fortunately the key facts emerge from an analysis
that assumes the displacements are small and that evaluates quantities only to second
order in ζ ≡ |ζ | and ξ ≡ |ξ |. It is seen below that ζ and ξ differ only at second order,
so that ξ and ζ may be used interchangeably in second-order terms and O(ξ 3) errors
can be expressed as O(ζ 3) errors. An example of this is the Taylor expansion of the
Lagrangian scalar φL(x, t) = φ(x + ξ , t) (see (3.4b) and (3.5a)), which in terms of φ(x)
is

φL = φ + ξ ·∇ φ + 1
2
ξj ξk

∂2 φ

∂xj∂xk

+ O(ξ 3) . (5.1)

We will eventually replace the second-order product ξj ξk in (5.1) by ζj ζk and will write
the error term as O(ζ 3), but we will be careful to distinguish between a first-order
term such as ξ ·∇ and its ζ -counterpart ζ ·∇.

Use of (5.1) in the case of the velocity shows that vS defined by (4.3a) has the
Taylor expansion

vS ≡ vL − v = ξ ·∇ v + 1
2
ξj ξk

∂2 v

∂xj∂xk

+ O(ξ 3) . (5.2)

Its mean and fluctuating parts determine

vL = v + O(ξ 2) , vS ′
= ξ ·∇ v + O(ξ 2) . (5.3a, b)

Then from (5.3b) and (4.3b), we obtain

ζ = ξ + O(ξ 2) so that vS ′
= vs ′ + O(ξ 2) (5.3c, d)

(see (3.51b)). Since trivially (5.3c) implies that ξ = ζ + O(ζ 2) and, as we find it more
convenient to work with ζ rather than ξ , we henceforth give all error estimates in
terms of ζ .

The value of the fluctuating vector vS ′ − ξ ·∇vL is given exactly by (4.3b) but is also
determined approximately by (5.2). On equating the two expressions, we determine
the evolution equation

∂t (ξ − ζ ) + [v , (ξ − ζ )] ≈
(
ζ ·∇ v′)′

+ 1
2
(ζj ζk)

′ ∂2 v

∂xj∂xk

= O(ζ 2) (5.4)

for the difference ξ − ζ , where here and henceforth equality correct to order ζ 2 is
denoted by ≈ . Fortunately, when we consider mean quantities, we only need O(ζ )
accuracy for ξ − ζ and so we never need to solve (5.4) to determine its smaller O(ζ 2)
part.

Since the traditional GLM-approach developed in §3.1 within the HEL framework

concerns the evolution of V = v +vS + V P , while Holm’s glm-approach, as developed

in §3.2, concerns the evolution of V E = v + vs + V p , we will now identify the values

of the constituent velocities as well as determine the difference V − V E = v† + V †

(see (4.5b)) in the small-ζ limit (see (5.5d), (5.6d) below).
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Subtraction of vs = ζ ·∇v (see (3.51b)) from vS given by (5.2) determines v† defined
by (4.3a). Correct to our required O(ζ 2) accuracy it is

v† ≡ vS − vs ≈ (ξ − ζ )·∇ v + 1
2
ζj ζk

∂2 v

∂xj∂xk

, (5.5a)

from which we deduce that

vS = vs + v† , (5.5b)

where

vs = ζ ·∇ v′ and v† ≈ 1
2
ζj ζk

∂2 v

∂xj∂xk

. (5.5c, d)

Unfortunately the fluctuating part v†′
of v† depends on ξ −ζ for which no closed-form

O(ζ 2) solution of (5.4) is available. Nevertheless, this is of no consequence, as we only
need O(ζ ) accuracy of our fluctuating quantities.

In a similar vein, subtraction of V p = (∇ζ ) · v (see (3.51c)) from V P = (∇ξ ) · vL

given by (3.30c) determines V † defined by (4.4). Remembering that v = vL − vS , we
obtain

V † ≡ V P − V p =
(
∇(ξ − ζ )

)
· vL + (∇ζ ) · vS (5.6a)

from which we see that

V P = V p + V † , (5.6b)

where

V p = (∇ζ ) · v′ and V
†
i ≈ ζk

∂ζj

∂xi

∂vj

∂xk

(5.6c, d)

on use of vS = ζ ·∇ v + O(ζ 2) (see (5.2)).

The mean Euler equations E = 0 (see (4.8a)) and EE = 0 (see (4.7a)) are not only

concerned with advection of momentum identified by V and V E but also involve
the gradients of the pressures ΠL and ΠE respectively. To compare these pressure
gradient terms, we take the Taylor expansion (5.1) for ΠL, subtract from it the value
ΠE = Π + ζ ·∇ Π given by (3.45b) and so obtain

Π† ≡ ΠL − ΠE ≈ (ξ − ζ )·∇ Π + 1
2
ζj ζk

∂2 Π

∂xj∂xk

, (5.7a)

from which we deduce that

ΠL = ΠE + Π† , (5.7b)

where

ΠE = Π + ζ ·∇ Π ′ and Π† ≈ 1
2
ζj ζk

∂2 Π

∂xj∂xk

. (5.7c, d)

Finally to complete the links between the Euler equations themselves, we present
the decompositions suggested by our treatment of the velocity above. As in the
representation (5.5a) of v†, we introduce

EEE† ≡ EEEL − (EEE + ζ ·∇EEE) ≈ (ξ − ζ )·∇ EEE + 1
2
ζj ζk

∂2 EEE
∂xj∂xk

, (5.8a)

and, in a similar spirit to the representation (5.6a) of V †, we introduce

E† ≡ (E − EEEL) − (∇ζ ) · EEE =
(
∇(ξ − ζ )

)
· EEEL + (∇ζ ) · (EEEL − EEE) , (5.8b)
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where we have used E −EEEL = (∇ξ ) · EEEL (see (3.27c)). Moreover, since EE = EEE+{ζ , EEE}
(see (3.48a)), we may write the first equality in (5.8a) in the alternative form EEE† =
(EEEL − EE) + (∇ζ ) · EEE, which when added to (5.8b) yields

E − EE = EEE† + E† (5.8c)

(cf. (4.5b)). Thus the averaged forms of Euler’s equation are related by

E − EE = EEE† + E† , (5.9a)
where

EEE† ≈ 1
2
ζj ζk

∂2 EEE
∂xj∂xk

and E
†
i ≈ ζk

∂ζj

∂xi

∂Ej

∂xk

(5.9b, c)

on use of the result EEEL − EEE = ζ ·∇EEE + O(ζ 2) obtained from (5.8a) (cf. the expressions

(5.5d) and (5.6d) for v† and V † respectively).

The difference of E and EE determined by (5.9a) explains the relevance of EEE† and

E†. That difference exposes clearly the way in which the structure of the glm-equation

EE = 0 (as corrected by us) differs from that of the GLM-equation E = 0.

6. Conclusions
In this paper we have derived consequences of Hamilton’s principle for the motion

of an incompressible fluid. All our results generalize easily to compressible fluids, for
which the pressure term −p((ρ/ρ0) − 1) in (2.9a) is replaced by ρU (ρ, S) where U

is the internal energy per unit mass and S is the specific entropy. In the special case
of isentropy, the compressible fluid is barotropic (U = U (ρ)) and Kelvin’s theorem
again applies together with all our principal results including the one that prevents
the NS–α equations from obeying Kelvin’s circulation theorem.

Our main conclusion concerns the use of Hamilton’s principle when the flow velocity
v is decomposed into two parts v and v′. Recall that in our §3.2 development we
regarded this decomposition as arbitrary and not constrained by our later demand
that v and v′ are the mean and fluctuating parts of v. Without that constraint, any
velocity increment δv resulting from a virtual displacement of a particle path may
be expressed as δv = δv + δv′, in which the choice of the values of one or other
of δv and δv′ is at our disposal. So, if we make the traditional choice δv = δv

corresponding to fixed v′ with δv′ = 0, we obviously recover the variational form
(3.44) of Euler’s equation without the extra term (3.46) involving δAE/δζ . We say
‘obviously’, because the derivation is equivalent to the original §2.2 derivation of
Euler’s equation EEE = 0 with EEE given by (2.26a). In §3.2, however, we adopt the
representation v′ = ∂tζ + [v , ζ ], which means that not only is v′ a function of a new
vector ζ it is also a function of v. Consequently, when ζ is held fixed, the increment
δv forces the simultaneous increment δv′ = [δv , ζ ] so that δv �= δv. To accommodate
this failure we have to include a variation of ζ at fixed v to achieve the correct value
of δv. The consequences are encapsulated in the variational form (3.44) of Euler’s
equation which includes the term involving δAE/δζ . From an operational point of
view all the results just described continue to apply when v and v′ are the mean and
fluctuating parts of v.

In essence, Holm (2002b) adopted the proposed representation v′ = ∂tζ + [v , ζ ]
but mistakenly used the variational equations that arise from the traditional choice
δv = δv. Having ignored the consequences of the necessary displacement of ζ , he

arrived at (4.7a) without the term {ζ , {v′ , v}} = −ζ × (∇ × {v′ , v}) + ∇ ζ ·{v′ , v},
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as determined by the alternative representation (A2d) in Appendix A of the bilinear
operator { · , ·}. This attractive omission has the consequence that the circulation∮

CE V E· dx about contours CE advected at the mean velocity v is conserved. If
conservation of circulation is of the first importance, it can also be achieved by
making the integral on the right-hand side of (4.7b) vanish through the closure
assumption, ζ × (∇ × {v′ , v}) = ∇ φE for some single valued function φE . A simpler
alternative way of conserving circulation

∮
CE v· dx is to make the closure assumption

v′ × (∇ × v′) = ∇ φ in (4.6a), for some single-valued function φ. Of course this
assumption encompasses the simplistic classical approximation, which neglects the
Reynolds stress v′·∇v′ in its entirety. There is a third alternative suggested by (4.8a):
if we make the assumption vS × (∇ × V ) = ∇ φL for some single-valued function
φL, then the circulation

∮
CE V · dx is preserved. It is clear that the adoption of any

of these assumptions, including Holm’s implicit assumption that {ζ , {v′ , v}} = 0,
requires a physical argument in support. In Holm’s case, since researchers appear to
be unaware of the issue, no argument for the neglect of {ζ , {v′ , v}} has ever been
given.

The upshot of all this is that the proper way to achieve conservation of circulation
is to adopt the HEL approach which yields the mean field equation (4.9a). That, in
turn, leads to the conservation of the circulation

∮
CL V · dx (see (4.9b)) for circuits

advected by the mean Lagrangian velocity vL = v +vS rather than the Eulerian mean
v. Evidently the study of the evolution of V is relevant. An investigation along the
lines of Holm (2002b) must be based on the small-ξ assumption made in §5. Holm
(2002b) made effective use of various Taylor hypotheses (closure approximations)

and in particular of V E − v = vs + V p ≈ −α2∇2v, for some α determined by the
quadratic moments of the displacement statistics. He could do this because of the
relatively simple forms (5.5c) and (5.6c) of vs and V p . It is far from clear that
any comparably simple α representation is available for the additional difference

V − V E = v† + V † defined by (4.5b) and determined by the approximate (and

more complicated) representations (5.5d) and (5.6d) of v† and V †. Whatever mean-
field approach is adopted, it should be remembered that only v has the solenoidal

property ∇·v = 0, while other vectors such as vS , vL, V E and V are generally not
solenoidal.

Finally it should be pointed out that the principal results of this paper can be
derived by attacking (2.1a) directly, without invoking Hamilton’s principle, which is in
any case unavailable when viscosity is restored. Moreover, the same direct approach
is successful when viscosity is included, and the Navier–Stokes equations are attacked.
Under the HEL transformation, the viscous term ν∇2v becomes complicated; see
Roberts & Soward (2006). We shall therefore not consider this generalization
here.
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Appendix A. The bilinear operators
Note that, though the vectors used in the identities (A1)–(A3) below are arbitrary,

they have been chosen to reflect our usage in this paper.
The bilinear operator

[v , η] ≡ v·∇η − η ·∇v (A1a)

introduced in (2.21c) is antisymmetric, [η , v] + [v , η] = 0. It has the divergence
property

∇·
(
φ [v , η]

)
= ∇·

(
v ∇·(φ η) − η ∇·(φ v)

)
(A1b)

and the useful cyclic property

[ [v , ζ ] , η] + [ [η , v] , ζ ] + [ [ζ , η] , v] = 0 (A1c)

called the Jacobi identity in Lie algebra.
The bilinear operators introduced in (2.22b) and (2.25b) have the component forms

{v , V}i = vk

∂Vi

∂xk

+
∂vk

∂xi

Vk , 〈v , V 〉i =
∂

∂xk

(vkVi) +
∂vk

∂xi

Vk . (A2a, b)

They are related by

{v , V} ≡ 〈v , V 〉 − (∇·v) V , (A2c)

a result which shows that {v , V} and 〈v , V 〉 are the same whenever ∇·v = 0. In the
concluding §6, we appeal to the alternative form

{v , V} ≡ − v × (∇ × V ) + ∇(v·V ) . (A2d)

In our application of the bilinear operator (A1b) to Hamilton’s principle,
particularly in §3.2, we need the adjoint property

V ·[v , η] + η·〈v , V 〉 = ∇·((η·V ) v) (A3a)

and the useful commutator property

〈v , 〈ζ , V 〉〉 − 〈ζ , 〈v , V 〉〉 = 〈[v, ζ ], V 〉, (A3b)

which is related to the result (A1c).

Appendix B. Verification of the key formula (3.43) for EEE
We consider the first three terms on the right-hand side of (3.37a). As instructed

in §3.2, we substitute into each successive term the values of δv, δρ and δζ given by
(3.41a, b) and (3.42) respectively. Then use of the adjoint property (A3a) gives(

δAE

δv

)
· δv +

(
δAE

δρ

)
δρ +

(
δAE

δζ

)
· δζ + η·ρEEE

=
∂

∂t

(
η · δAE

δv

)
+ ∇·

((
η · δAE

δv

)
v − ηρ

δAE

δρ
+

(
η · δAE

δζ

)
ζ

)
, (B1)

in which ρEEE is defined by (3.43). On the right-hand side of (B1) we substitute the
values (3.37b – d) for δAE/δv, δAE/δζ and δAE/δρ. To the resulting expression, we
now add the remaining terms in (3.37a), again using the expressions (3.41a, b) and
(3.42) for δv, δρ and δζ . Accordingly, we obtain the result

δL + η·ρEEE = ∂t

(
η·ρv + M

)
+ ∇·

(
(η·ρv) (v + v′) + η(ρ + ρ ′)Π + Sv + SΠ

)
, (B2)



322 A. M. Soward and P. H. Roberts

in which v′, ρ ′ are given by (3.32c, d) and

M = ρv· [ζ , η] + η·〈ζ , ρv〉 − ∇·((ρv·η) ζ ), (B3a)

Sv = v
(
ρv· [ζ , η] + η·〈ζ , ρv〉

)
− ζ

(
ρv· [v , η] + η·〈v , ρv〉

)
− (η·ρv) [v , ζ ] , (B3b)

SΠ = − ζ ∇· (ρ Πη) + η ∇· (ρ Πζ ) + ρ Π [ζ , η] . (B3c)

The adjoint identity (A3a) is used to show that M vanishes and to simplify the
expression for Sv . Then the identity (A1b) is employed to show that the divergences
of Sv and SΠ vanish as well. Consequently each of the extra unwanted terms in (B2)
vanish, namely

∂t M = 0 , ∇·(Sv + SΠ ) = 0 . (B4a, b)

Hence (B2) and (B4a, b) establish that δL defined by (3.37a) is identical to the
elementary form (2.25a), albeit with ρEEE defined by (3.43) rather than (2.25b).

Our final task is to evaluate (3.43) explicitly using (3.37b–d). The result is

ρEEE = ∂t (ρv) + 〈(v + v′) , ρv〉 + (ρ + ρ ′) ∇Π + SSSv + SSSΠ (B5)

similar to (2.25b) but with the additional terms

SSSv = −〈[v , ζ ] , ρv〉 + 〈v , 〈ζ , ρv〉〉 − 〈ζ , 〈v , ρv〉〉, (B6a)

SSSΠ = −
〈
ζ , ρ ∇Π

〉
+ ρ ∇(ζ ·∇Π) +

(
∇· (ρζ )

)
∇Π . (B6b)

Nevertheless use of (A3b) shows that SSSv vanishes, while the direct evaluation of SSSΠ

shows that it vanishes too giving

SSSv + SSSΠ = 0 . (B6c)

Accordingly, together (B5) and (B6c) establish that ρEEE defined by (3.43) is identical
to the primitive definition (2.25b).
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